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ABSTRACT 

 
The JQRR metrics for Information Assurance (IA) 

and Computer Network Defense (CND) are combined 
with a framework based on defense graphs. This enables 
the use of architectural models for rational decision mak-
ing, based on the mathematical rigor of extended influ-
ence diagrams. A sample abstract model is provided, 
along with a simple example of its usage to assess access 
control vulnerability. 

 
1. INTRODUCTION 

 
With the advent of Network Centric Warfare, Infor-

mation Assurance (IA) is becoming ever more important 
to the success of military operations. Reliable and secure 
IT systems are vital to ensure success on the battlefield, 
and precisely because of this, they also become the focus 
of adversarial attention. 

 
IA, however, is a complicated function of many dif-

ferent concepts such as technical countermeasures, orga-
nizational policies, security procedures, and more. Mea-
suring the level of IA, therefore, is a non-trivial exercise; 
making rational decisions and prioritizations about the use 
of scarce resources is ever more so.  

 
To efficiently protect computer networks and the in-

formation stored in them, combatant commanders and 
combat support agencies need to be able to assess the 
current security level of their IT systems as well as the 
security level after improvements. An example of a 
framework for such assessment is the Information Assur-
ance (IA) and Computer Network Defense (CND) Joint 
Quarterly Readiness Review (JQRR) Metrics (Joint 
Chiefs of Staff, 2003), which provides six different cate-
gories of metrics, used for readiness assessments of US 
forces: 1. Personnel, 2. Training, 3. Operations, 
4. Technology (equipment), 5. Supporting Infrastructure, 
and 6. Intelligence. 

 
The diversity of these metrics, and similar ones, pos-

es problems of how to accurately weigh them all together 
into a coherent picture of security. An even more pressing 
problem, however, is that all assessment metrics are a 

priori, while the actual threat consequences, of course, are 
a posteriori notions. This is causal uncertainty. 

 
Furthermore, decision makers using metrics face a 

second kind of uncertainty, viz. whether information and 
indicators collected during a security assessment are cred-
ible. Measurement errors, misunderstandings and delibe-
rate deception all challenge the credibility of the assess-
ment result. This is measurement uncertainty. 

 
This paper describes a method for how to combine 

Bayesian statistics-based extended influence diagrams 
with attack graphs and countermeasures into an IA as-
sessment framework. This framework is able to take both 
types of uncertainty into consideration. 

 
This approach allows a mathematical handling of the 

uncertainty regarding both what countermeasures are in 
place, and how well they contribute to thwarting attacks. 
The Bayesian approach allows calculating the probability 
that attacks succeed from an enterprise architecture mod-
el. The framework also takes uncertainties of the security 
assessment into consideration. Moreover, using the ex-
tended influence diagram formalism, the expected loss 
from each attack can be calculated. Scenarios can be 
compared, allowing more informed decisions of how to 
optimally use the available IA resources. 

 
1.1 Outline 

 
The remainder of this paper is structured as follows. 

Section 2 addresses some related works on security me-
trics and puts the present contribution into context. The 
important concepts of attack trees and defense graphs are 
introduced in section 3, whereas the extended influence 
diagrams used for probabilistic modeling are introduced 
in section 4. Section 5 provides a simple example of how 
to use the theory thus formed for IA analysis. Section 6 
explains how the preceding theories can be integrated into 
a single abstract model. Section 7 summarizes the contri-
bution, while section 8 concludes the paper. 

 
2. SECURITY METRICS 

 
Within the field of security and information assur-

ance research, substantial efforts have been devoted to 
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methods and methodologies to rank, score and measure 
security. In addition to direct metrics, such as “the percen-
tage of systems updated with the latest patches”, a number 
of more elaborate measurement and ranking methods 
have been suggested. Some examples are the weakest 
adversary metric (Pamula et al. 2006), mean-time-to-
compromise metric (Leversage and James, 2008), robust-
ness strategy (Arber et al., 2000), the attack surface metric 
(Manadhata and Wing, 2005), operational readiness me-
trics (Connolly, 2001), and the system vulnerability index 
(Alex-Foss and Barbosa, 1995). 

 
IA depends on the interaction of processes, proce-

dures, tools and people (Henning, 2001). One of the con-
clusions from the Workshop on Information-Security 
System Rating and Ranking (Henning, 2001) was that it 
will not be possible to successfully quantify the assurance 
present in a system using any one single security metric. 
Consequently, metric frameworks typically suggest mul-
tiple metrics for these different domains; see for example 
NIST SP 800-55 (Swanson et al., 2003) or the JQRR 
metrics (Joint Chiefs of Staff, 2003). Checklist methods 
based on standards such as ISO 17799 is another common 
practice to include the many facets of security. The me-
thods typically provide a list of indicators, but do not 
describe how to combine these indicators into an overall 
value for security. Yet, an overall indicator on security is 
desirable, and methods to combine different metrics in a 
meaningful way is a subject of research. Some work has 
also been devoted to combing metrics into an overall 
indicator, for example (Weiss et al. 2005) and (Johansson, 
2005). 

 
However, no prior work has described how to com-

bine metrics while taking into account both causal uncer-
tainty and measurement uncertainty. This paper suggests 
a method for doing so by using attack trees as the struc-
ture for aggregating values related to security into a single 
measure. 

 
3. ATTACK TREES AND DEFENSE GRAPHS 

 
Attack trees are a graphical notation evolved from 

fault trees, where the main goal of an attacker is depicted 
as the root of a tree (Schechter, 2004). The steps to reach 
this goal are broken down into sub-goals of the attack 
through “AND” and “OR” relationships. This is a stan-
dard, intuitive way of modeling threats and security. 

 
Attack graphs can easily grow extensively. To 

represent them more compactly, Liu and Hong (2005) 
have used Bayesian networks to express them and to 
calculate the probability of an attack against computer 
networks being successful based on vulnerabilities within 
it. These “Bayesian attack graphs” can be used to answer 
questions about the current security status and facilitate 
comparison with previous measurements, but does not 

answer questions about how to improve the security sta-
tus. Bayesian networks have also been used together with 
attack trees to analyze other security related concepts, for 
example with the purpose of intrusion detection (Qin and 
Lee, 2004). 

 
A natural extension of attack graphs is to include not 

only attacks, but also countermeasures. From the perspec-
tive of the system owner, this amounts to adding controll-
able elements to the graph. In (Howard and LeBlanc, 
2003) countermeasures are modeled together with trees 
depicting threats, and in the theses by Foster (2002) and 
Schechter (2004) countermeasures are included in the tree 
structures. The concept of including countermeasures in 
the tree structure has also been used in (Bistarelli et al. 
2006), to create something called “defense trees”, illu-
strated in Figure 1. Techniques have been presented 
which use defense trees for strategic evaluation of securi-
ty investments (Bistarelli et al. 2006), modeling strategic 
games in security (Bistarelli et al. 2007b) as well as mod-
eling of conditional preference of defense techniques 
using conditional preference nets (Bistarelli et al. 2007a). 
Defense trees (or graphs) has also suggested together with 
extended influence diagrams for security assessments in 
Sommestad et al (2008) and Sommestad et al. (2009). 
This paper builds on that work and describes how defense 
trees can be connected with measurement frameworks to 
create an aggregate indicator on security. 

 

 
Figure 1. The defense tree concept, from (Bistarelli, 

2007a). 
 

4. EXTENDED INFLUENCE DIAGRAMS 
 
Extended influence diagrams are a powerful model-

ing approach, used to depict and analyze complex causal 
interplay between quantities (Johnson et al., 2007b). 
These diagrams may be used to formally specify enter-
prise architecture analysis (Johnson et al., 2007a). The 
diagrams are an extension of influence diagrams, as de-
scribed by Shachter (1986 and 1988) which in turn are an 
enhancement of Bayesian networks (cf. Neapolitan (2003) 
and Jensen (2001)). In extended influence diagrams, ran-
dom variables graphically represented as chance nodes 
may assume values, or states, from a finite domain (cf. 
Fig. 2). A utility node represents a desired goal, such as 
“Information confidentiality”. The meaning of the utility 
node can be further defined by other nodes that it has a 
definitional relation to. Causal relations on the other hand 
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capture associations of the real world, such as “the train-
ing of system administrators affects network security”. 

As illustrated in the example diagram of Fig. 2, Ex-
tended Influence Diagrams can be used to represent de-
fense trees. A utility node can be used to represent the 
consequence of successful attacks and the steps required 
for their success can be decomposed into a number of 
substeps. Attack steps will then assume the state “Suc-
cess” or “Failure”, depending on the states of its parents. 
The states of countermeasures influence the probability 
that an attack will be successful. Thus, they are modeled 
as causal parents to the attack steps. Finally, depending on 
the scenario chosen, the states of countermeasures will 
differ. This can be represented by decision nodes that 
influence the state of countermeasures. (Sommestad et al, 
2008). 

 

Node Type

Relationship Type

Utility Node Decision Node

Definitional RelationCausal Relation

Chance Node

Informational Relation

Security breach

Scenario Selection

Attack step 1 Attack step 2

Extended influence diagram syntax

Example diagram

Attack goal

Countermeasure 1 Countermeasure 2

Attack goal 1  Success  Failure 
Utility  ‐1000  0 

Countermeasure 1  State1  State2 
Success  P5  P6 
Failure  (1‐ P5)  (1‐ P6) 
 

Attack step 1  State1  State2
Attack step 2  State1  State2  State1 State2
Success  P1  P2  P3 P4
Failure  (1‐ P1)  (1‐ P2)  (1‐ P3) (1‐ P4)

 

 
Figure 2. Syntactic elements of extended influence 

diagrams and a simple example. 
 
The mathematical rigor describing the causal rela-

tions is that of Bayesian networks. A Bayesian network, 
B = (G, P), can be described as a representation of a joint 
probability distribution, where G = (V, E) is a directed 
acyclic graph consisting of vertices, V, and edges, E. P is 
the probability distribution over the states of the variables 
associated with each vertex. 

 
In a Bayesian network, the vertices denote a domain 

of random variables X1,…,Xn, also called chance nodes. In 
the context of concrete models, each chance node corres-
ponds to an attribute. Each chance node, Xi, may assume a 
value xi from the finite domain Val(Xi). The advantage of 
the graph representation is that it provides a compact way 
of expressing the dependency relations between the ran-
dom variables, i.e. which variables are conditionally inde-
pendent given other variables. Each edge denotes a causal 
dependency between its nodes. 

 

In order to specify the joint distribution, the respec-
tive conditional probabilities that appear in the product 
form (1) must be defined. 

( ) ( )( )∏
=

=
n

i
iin XPaXPXXP

1
1 ,...,

 
(1) 

The second component P describes distributions for 
each possible value xi of Xi, and pa(Xi) of Pa(Xi), where 
Pa(Xi) is the set of parent nodes of Xi. These conditional 
probabilities are represented in matrices, here forth called 
Conditional Probability Matrices (CPMs). Using a Baye-
sian network, it is possible to answer questions such as 
what is the probability of variable X being in state x1 giv-
en that its parents Y and Z are in states y2 and z1 (Y = y2 
and Z = z1). An example of a Bayesian network with 
CPMs representing the probabilities of success in various 
attacks is shown in Figure 2. 

 
One important feature of the Bayesian formalism is 

the possibility to learn from previous data and create 
powerful statistical models for accurate IA assessments. 
Since extended influence diagrams, as opposed to mere 
Bayesian networks, include the notions of decision and 
utility nodes, predicted losses from successful attacks can 
be included in the models, thus enabling a more holistic 
view of IA. 

 
4.1. Tests in Extended influence diagrams 

 
In Bayesian networks and extended influence dia-

grams, entities are often modeled that are exceedingly 
difficult to assess directly. When modeling high level 
architectural concepts such as information assurance, 
system availability, etc. there is rarely a single gold stan-
dard of measurement. In the models, this is reflected by 
the use of tests. Tests can be done at different abstraction 
levels. At the lowest abstraction level, it is often 
straightforward to define and measure things like the 
percentage of computers that are fit with antivirus soft-
ware. At a higher level, one might interview stakeholders 
about things such as the overall competence of system 
administrators, and skip the details of how they acquired 
this knowledge. 

 
A common feature of such tests is that they do not 

reveal definite truths. Rather, test have a level of credibili-
ty that can be taken into account when performing the 
analysis. 

 
Formally, a test of a variable is represented as a node, 

and the causality arrow is directed from the variable to the 
test. Thus, as it should be, the result of the test depends on 
the state of the variable, as illustrated in Figure 3. The 
states of the test, {t1, t2}, by definition correspond to the 
states {x1, x2} of the variable as illustrated in the table in 
Figure 3. 
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x 1 x 2

t 1 P(t 1 |x 1 ) P(t 1 |x 2 )
t 2 P(t 2 |x 1 ) P(t 2 |x 2 )

X

T

Figure 3. A node X with the test T and the CPM for the 
test node. 

 
In the table in Figure 3, the outcome of the test is re-

lated to the actual states of the variable, i.e. a model of the 
accuracy of the test. A perfect test would correspond to an 
identity matrix CPM. Since most realistic (and interest-
ing) tests are less than perfect, the CPM will rarely be an 
identity matrix, but rather reflect measurement uncertain-
ty. 

 
5. A SERVER ATTACK EXAMPLE 

 
Figure 4 illustrates a defense tree for spoofing attacks 

directed against servers using the Internet Protocol (IP), 
inspired by (Howard and LeBlanc, 2003). Examples of 
military IP based networks include the NIPRNet and the 
SIPRNet, as well as the tactical voice over IP network 
RIPRNet. A spoofing attack will require the adversary to 
both knock out the valid machine and at the same time 
have created a new one with the same name. Knocking 
out a server can be done in four ways. Firstly, the attacker 
may hijack the DNS of the server by infecting it with 
malicious code or exploit some other vulnerability. Se-
condly, if the adversary is able to bypass the network 

perimeter with traffic without being cut off; she can flood 
the server with bad IP packets to make it unavailable. 
Two other options are simply to turn off the power to the 
server, or rename it into something else. Decomposing 
this further, the adversary is required to gain access to 
power breakers or to turn off the power, and require her 
access to the computer room and server interface to re-
name it, respectively. 

 
A number of defense measures can mitigate this 

threat or at least make the steps in this attack more diffi-
cult to accomplish. In this simplified example, antivirus 
software and patched systems will provide some protec-
tion against attacks directed towards the DNS server. 
Having this functionality at the web server’s local DNS 
server naturally does not offer protection against com-
promised servers at the client side. However, it does make 
attacks against the server side more difficult. 

 
The ability to resist flooding of the server with bad IP 

packets is strengthened by using proper boundary protec-
tion (firewalls) and the use of intrusion detection systems 
(IDS) that can alert administrators of anomalies. Access 
to the computer room as well as its power can be re-
stricted using physical access control mechanisms. Unau-
thorized access to the server can be mitigated with logical 
access controls, such as password protection. 

 
This example illustrates attack vectors and counter-

measures for an attack that spoofs a content server on an 
IP based network, such as the NIPRNet. 

 

Spoof contents 
server

Create machine 
with same name

Knock out valid 
machine

DNS Hijacking
Flood server 
with bad IP 

packets

Turn of power to 
server Rename server

OR

Exploit protocol 
vulnerability

Infect DNS 
server with 

malicious code

Access to the 
power switch

Access to the 
computer room 

power

Physical access 
to the computer 

room

Bypass network 
perimter

Avoid being cut 
of

IDS in placeNetwork is firewall
protected

DNS server  is 
patched

DNS server has 
anti-virus

Level of logical 
access control

Logical access 
to the server

OR

Physical 
security

Competence of 
sysadmins

Projected 
losses of attack

OR

OR OROR

4.1.3 % Anti 
virus installed 

of required

4.1.2 % firewalls 
installed of 
required

3.1.5 Regular and 
proactive 

vulnerability analysis

2.1.1 % 
Sysadmins 

certified

5.2.2 secure 
environment

1.1.1 % 
sysadmins of 

required

2.2.1 % Users 
passed training 
and awareness

1.4.1 % network 
information management 

personnel of required

Utility node

Attack step
(attacker’s decisions)

Security variable 
(defender’s decisions)

Security 
metric

Legend

Administrator’s 
workload

User’s security 
awareness

 
Figure 4. Example defense three. Inspired by (Howard and LeBlanc, 2003). The attack steps are the controllable nodes 

of the attacker, while the security variables are the controllable nodes of the system owner.
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A security assessment investigating the possibilities of 
various adversarial attacks will assess the probability of 
success associated with the different attack paths in the 
model, as remedied by the associated security controls 
implemented. The JQRR metrics provides in total 82 
metrics that are used to assess the level of IA and com-
puter network defense (CND) of DoD information sys-
tems. Some of these are a posteriori indicators on the 
historical success rates of hostile attacks, while others 
indicate the current state of countermeasures. For clarity 
and brevity, a suitable subset of these metrics has been 
selected for the purpose of the present example. 
 
5.1. Incorporating metrics into the models 

 
As described in section 4.1, it is often exceedingly diffi-
cult to directly assess complex attributes such as the level 
of information assurance at a military facility. However, 
more low-level attributes of security facilities, such as the 
percentage of networks that have firewalls, or the percen-
tage of system administrators that are properly certified 
can usually be found. Such data can be regarded as evi-
dence on the state of the true variables. For example, 
consider the competence of the system administrators 
employed. The competence of a system administrator is a 
non-tangible, complex attribute, affected by a number of 
factors such as general experience, previous postings, 
formal education, certifications, ability to work under 
time pressure, etc. Clearly, these cannot all be modeled. 
What can be done, however, is an assessment based on a 
few simple attributes, such as the percentage of system 
administrators that are certified and whether regular and 
proactive vulnerability analyses are carried out. 
 

Table 1. A sample CPM, relating the competence of 
system administrators to a measurable variable. 

High Low
Yes 0.95 0.50
No 0.05 0.50

Regular and proactive 
vulnerability analyses 

Competence of sysadmins

 
 
In Table 1, an example is given of how the compe-

tence of system administrators might be related to the 
existence of regular and proactive vulnerability analyses. 
It is reasonable to assume that such analyses occur with a 
very high probability if the administrators are highly 
competent, while less competent administrators will not 
be equally heedful. 

 
Table 2. A sample CPM, relating the competence of 

system administrators to their level of certification. 
High Low

Yes 0.80 0.30
No 0.20 0.70

Competence of sysadmins
Percentage of certified 
sysadmins  
 
Similarly, Table 2 shows how the competence of sys-

tem administrators might be related to their level of certi-
fication. Now, assuming that these fairly straightforward 

relations hold, inference about the abstract and more elu-
sive competence of the system administrators can be car-
ried out using Bayes’ theorem. 

 
5.2. The JQRR metrics 

 
The JQRR metric 3.3.1 is an a posteriori indicator 

that deals with incidents of unauthorized access during the 
last reporting period. Put in the context of this example, 
this indicates whether the attack is possible or not and it 
would indicate whether access can be gained to the con-
tents server or the DNS server. 

 
Figure 4 further includes a number of metrics that in-

dicate the state of countermeasures. The percentage of 
computers with antivirus software installed (JQRR 4.1.3) 
provides an indicator on whether the DNS server has such 
software installed. Metric 3.1.5, measures the readiness of 
regular and proactive vulnerability assessments and gives 
information that indicates whether systems are sufficient-
ly patched and updated. 

 
The percentage of firewalls that are installed as per-

centage of the number of required ones (JQRR 4.1.2) 
indicates whether the network is firewall protected. Me-
tric 2.1.1 is the percentage of system administrators that 
are certified. This is assumed to be an indication of the 
quality of the network’s firewall protection and IDS. 

 
Physical security is assessed through JQRR metric 

5.2.2. Logical access management is measured through 
three indicators: (1) The number of system administrators 
compared to the number required, (2) the percentage of 
users that has passed training and awareness require-
ments, and (3) the percentage of network information 
management personnel compared to the number required. 
These three jointly indicate the state of logical access 
control management. 
 

6. ABSTRACT MODEL 
 

The preceding example sketches but one out of many 
possible attacks and uses but a few of all the JQRR me-
trics. In order to generalize this example and employ the 
method proposed on a broader scale, it is necessary to 
approach the problem in a more abstract fashion. The 
concept of metamodels helps us to do that. 

 
A metamodel is a collection of concepts, used as 

building blocks when modeling the world. A metamodel 
formalizes the fact that certain entities and relationships 
(e.g. “computer” and “firewall”) are particularly impor-
tant to include in IA assessment models. Having identi-
fied these concepts and relations, they can be used as 
templates in practical modeling cases. 
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<Facility>

Administrates

<Content server>

Firewall protected

<DNS server>

Is patched

Has anti virus software

<User>

Security awareness

<Sysadmin>

Level of competence

Physically security

Level of logical access control
Administrates

Occupies

Uses

Workload

<Network>

Firewall protected

Quality of IDS

Is a part of

Locates

Is located in

Administrates  
Figure 5. A metamodel describing the entities and relations used in the defense part of the attack example. 
 
The use of metamodels guides modelers, enforces 

coherent practices and terminology, and enables the use 
of underlying theoretical concepts. Figure 5 illustrates a 
metamodel of the entities and relations used in the attack 
example depicted in Figure 4. As is readily seen, this 
metamodel matches the example and the domain of analy-
sis in the sense that a modeler who uses its concepts as 
her building blocks will inevitably create a model well 
suited for IA analysis. 

 
The usefulness of metamodels, however, is even 

more evident when considering their link to the mathe-
matical formalism embedded in the extended influence 
diagrams. Each attribute relation corresponds to a proba-
bilistic effect of one attribute on another, and to a CPM 
quantifying this. The term abstract model is used for a 
metamodel that is augmented with an extended influence 
diagram describing, in a Bayesian fashion, the causal 
relationships between the entities involved (Johnson et al, 
2007b). 

 
Detailed guidance for modeling of DoD systems and 

operations is beyond the scope of this paper, but can be 
found for instance in the DoD Architecture Framework 
(Department of Defense, 2007) and in the extensive re-
lated literature. 

 
Using the metamodel depicted in Figure 5, concrete 

situations can be modeled and assessed with respect to IA. 
In Figure 6, a simple situation is described, using entities 
and relations from the metamodel. System administrators 
Kevin and James administrates servers (one DNS server 
and one NIPRNet contents server), and users Douglas, 

Robert and Kim all use either the contents server or have 
access to the building where it is located. By prescribing a 
terminology for describing this situation, the metamodel 
facilitates analysis of the concrete model using the ex-
tended influence diagram formalism. A concrete outcome 
of such an analysis might be a 32% risk of server spoof-
ing, entailing an expected monetary loss of $ 2 million. 
Another outcome might be a recommendation on how to 
enhance the IA level. 

 
7. DISCUSSION 

 
The method described in the previous sections pro-

vides a framework for IA analysis with a number of nota-
ble strengths. Firstly, the use of abstract models integrates 
the use of existing metrics with the Bayesian formalism. 
 

Secondly, the Bayesian formalism is well suited to 
handle both causal and measurement uncertainty, thus 
making the most of each IA assessment. Together with 
historical data on attacks, this facilitates calculation of 
expected loss for both the current state of systems and 
potential future scenarios. 
 

Thirdly, information on expected losses prior to and 
after IA improvements enables more rational decision 
making. Using the framework proposed, combatant com-
manders and their staffs can create models of current and 
potential future scenarios based on metamodels covering 
the concepts relevant to IA. 

 
It is worth to dwell on the possibility of training the 

underlying Bayesian network using historical data.  
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Figure 6. A concrete model describing entities and relations that could be involved in an actual IA scenario. 
 
The present JQRR IA and CND metrics have been 

used by US defense services and DoD combat support 
agencies since July 2003. This means that a lot of data has 
been amassed and can be put to use within an extended 
influence diagram framework. 

 
The training of Bayesian networks is a subject exten-

sively treated in the literature (Jensen, 2001), (Russell and 
Norvig, 2003), (Friedman, 1998). Bayesian networks can 
be trained using expectation-maximization (EM) algo-
rithms, which in simple cases essentially reduce to the 
standard Bayesian inference algorithm. More complicated 
cases can become computationally too complex and thus 
require methods such as Markov Chain Monte Carlo 
(MCMC) for approximate Bayesian learning. An example 
of a freely available software tool for EM learning of 
Bayesian networks is GeNIe, developed by the Decision 
Systems Laboratory at the University of Pittsburgh. 

 
An extended influence diagram that has undergone 

proper learning with a posteriori measurement data be-
comes a powerful tool to assess the current IA level of 
military units and DoD combat support agencies. Fur-
thermore, it provides a compact and intuitive representa-
tion of complex dependencies within the IA domain, 
leading to increased usability. 
 

8. CONCLUSIONS 
 

The present paper uses the JQRR IA and CND me-
trics, and shows how their use can be extended and im-

proved within a framework based on defense graphs. A 
sample abstract model was provided, along with a simple 
example of its usage to assess access control vulnerability 
of an IP based military system such as the NIPRNet. The 
prospects for training a probabilistic inference engine 
based on historical data were discussed and identified as a 
potentially powerful method for making more rational IA 
assessments, a key factor in information warfare. 
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